Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.

Identifieur interne : 000589 ( Main/Exploration ); précédent : 000588; suivant : 000590

Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.

Auteurs : Rajib Sengupta [Suède] ; Arne Holmgren [Suède]

Source :

RBID : pubmed:24600515

Abstract

Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis.

DOI: 10.4331/wjbc.v5.i1.68
PubMed: 24600515
PubMed Central: PMC3942543


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.</title>
<author>
<name sortKey="Sengupta, Rajib" sort="Sengupta, Rajib" uniqKey="Sengupta R" first="Rajib" last="Sengupta">Rajib Sengupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24600515</idno>
<idno type="pmid">24600515</idno>
<idno type="doi">10.4331/wjbc.v5.i1.68</idno>
<idno type="pmc">PMC3942543</idno>
<idno type="wicri:Area/Main/Corpus">000644</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000644</idno>
<idno type="wicri:Area/Main/Curation">000644</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000644</idno>
<idno type="wicri:Area/Main/Exploration">000644</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.</title>
<author>
<name sortKey="Sengupta, Rajib" sort="Sengupta, Rajib" uniqKey="Sengupta R" first="Rajib" last="Sengupta">Rajib Sengupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">World journal of biological chemistry</title>
<idno type="ISSN">1949-8454</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24600515</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1949-8454</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>World journal of biological chemistry</Title>
<ISOAbbreviation>World J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>68-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4331/wjbc.v5.i1.68</ELocationID>
<Abstract>
<AbstractText>Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sengupta</LastName>
<ForeName>Rajib</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>World J Biol Chem</MedlineTA>
<NlmUniqueID>101546471</NlmUniqueID>
<ISSNLinking>1949-8454</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA synthesis</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Replication</Keyword>
<Keyword MajorTopicYN="N">Ribonucleotide reductase</Keyword>
<Keyword MajorTopicYN="N">Thiol disulfides</Keyword>
<Keyword MajorTopicYN="N">Thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24600515</ArticleId>
<ArticleId IdType="doi">10.4331/wjbc.v5.i1.68</ArticleId>
<ArticleId IdType="pmc">PMC3942543</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Recent Pat Anticancer Drug Discov. 2007 Jan;2(1):11-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18221051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Dec 1;49(11):1617-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20851762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Oct 31;2(10):e1112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pept Sci. 2011 Nov;17(11):756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Nov 3;26(22):6905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3322391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Feb;4(2):184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 1988 May;114(2):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3375425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):776-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Chemother Pharmacol. 2011 Jul;68(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20886212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jul 29;4(7):e6413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19641610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutagenesis. 2013 Nov;28(6):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24078015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jun 25;267(18):12627-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1618768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 18;370(6490):533-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:71-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jan 20;18(3):259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22702224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Jun 1;1699(1-2):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jul 17;273(29):18382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9660805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Oncol. 2006 Feb;28(2):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Transl Oncol. 2009 Dec;11(12):780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20045784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jun;1820(6):689-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Nov 25;263(33):17205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3053703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3826-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:681-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):703-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Ther Targets. 2013 Dec;17(12):1423-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24083455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1996 Aug 25;178(1):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(5):825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21105929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39686-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23012357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Cancer Drug Targets. 2006 Aug;6(5):409-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 27;284(13):8233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1991 Oct 1;174(4):761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1717630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Apr 5;267(10):7066-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1551913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1965 Sep;54(3):830-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5324398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2000 Feb 14;447(2):305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10751614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzyme Regul. 2005;45:112-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Nov 15;70(22):9505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Jul 15;123(Pt 14):2402-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9587-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 5;275(18):13398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Mar;18(3):251-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 2;404(6773):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Oct 12;287(42):35768-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 24;281(12 ):7834-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16436374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Gynecol Cancer. 2013 May;23(4):659-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23466567</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Sengupta, Rajib" sort="Sengupta, Rajib" uniqKey="Sengupta R" first="Rajib" last="Sengupta">Rajib Sengupta</name>
</noRegion>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000589 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000589 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24600515
   |texte=   Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24600515" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020